Mathematics

Unit Further Pure 3

Friday 25 January 20131.30 pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

It is given that $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=\sqrt{2 x+y}
$$

and

$$
y(3)=5
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.2$, to obtain an approximation to $y(3.2)$, giving your answer to four decimal places.
(b) Use the formula

$$
y_{r+1}=y_{r-1}+2 h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with your answer to part (a), to obtain an approximation to $y(3.4)$, giving your answer to three decimal places.

2 (a) Write down the expansion of $\mathrm{e}^{3 x}$ in ascending powers of x up to and including the term in x^{2}.
(b) Hence, or otherwise, find the term in x^{2} in the expansion, in ascending powers of x, of $\mathrm{e}^{3 x}(1+2 x)^{-\frac{3}{2}}$.

3 It is given that the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0
$$

is $y=\mathrm{e}^{x}(A x+B)$. Hence find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=6 \mathrm{e}^{x} \tag{5marks}
\end{equation*}
$$

4 (a) Explain why $\int_{0}^{1} x^{4} \ln x \mathrm{~d} x$ is an improper integral.
(b) Evaluate $\int_{0}^{1} x^{4} \ln x \mathrm{~d} x$, showing the limiting process used.

5 (a) Show that $\tan x$ is an integrating factor for the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{\sec ^{2} x}{\tan x} y=\tan x \tag{2marks}
\end{equation*}
$$

(b) Hence solve this differential equation, given that $y=3$ when $x=\frac{\pi}{4} . \quad$ (6 marks)

6 (a) It is given that $y=\ln \left(\mathrm{e}^{3 x} \cos x\right)$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3-\tan x$.
(ii) Find $\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}$.
(b) Hence use Maclaurin's theorem to show that the first three non-zero terms in the expansion, in ascending powers of x, of $\ln \left(\mathrm{e}^{3 x} \cos x\right)$ are $3 x-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}$.
(c) Write down the expansion of $\ln (1+p x)$, where p is a constant, in ascending powers of x up to and including the term in x^{2}.
(d) (i) Find the value of p for which $\lim _{x \rightarrow 0}\left[\frac{1}{x^{2}} \ln \left(\frac{\mathrm{e}^{3 x} \cos x}{1+p x}\right)\right]$ exists.
(ii) Hence find the value of $\lim _{x \rightarrow 0}\left[\frac{1}{x^{2}} \ln \left(\frac{\mathrm{e}^{3 x} \cos x}{1+p x}\right)\right]$ when p takes the value found in part (d)(i).

7 (a) Find the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=\mathrm{e}^{2 t}
$$

giving your answer in the form $y=\mathrm{f}(t)$.
(6 marks)
(b) Given that $x=t^{\frac{1}{2}}, x>0, t>0$ and y is a function of x, show that

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

(c) Hence show that the substitution $x=t^{\frac{1}{2}}$ transforms the differential equation

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\left(12 x^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+40 x^{3} y=4 x^{3} \mathrm{e}^{2 x^{2}}
$$

into

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=\mathrm{e}^{2 t} \tag{2marks}
\end{equation*}
$$

(d) Hence write down the general solution of the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\left(12 x^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+40 x^{3} y=4 x^{3} \mathrm{e}^{2 x^{2}} \tag{lmark}
\end{equation*}
$$

8
The diagram shows a sketch of a curve.

The polar equation of the curve is

$$
r=\sin 2 \theta \sqrt{\left(2+\frac{1}{2} \cos \theta\right)}, \quad 0 \leqslant \theta \leqslant \frac{\pi}{2}
$$

The point P is the point of the curve at which $\theta=\frac{\pi}{3}$.
The perpendicular from P to the initial line meets the initial line at the point N.
(a) (i) Find the exact value of r when $\theta=\frac{\pi}{3}$.
(ii) Show that the polar equation of the line $P N$ is $r=\frac{3 \sqrt{3}}{8} \sec \theta$.
(2 marks)
(iii) Find the area of triangle $O N P$ in the form $\frac{k \sqrt{3}}{128}$, where k is an integer. (2 marks)
(b) (i) Using the substitution $u=\sin \theta$, or otherwise, find $\int \sin ^{n} \theta \cos \theta \mathrm{~d} \theta$, where $n \geqslant 2$.
(ii) Find the area of the shaded region bounded by the line $O P$ and the $\operatorname{arc} O P$ of the curve. Give your answer in the form $a \pi+b \sqrt{3}+c$, where a, b and c are constants.
(8 marks)

